Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N, N^{\prime}-Bis[(4-methylphenyl)sulfonyl]adipamide

Vinola Z. Rodrigues, ${ }^{\text {a }}$ Sabine Foro ${ }^{\text {b }}$ and B. Thimme Gowda ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com
Received 28 February 2011; accepted 1 March 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.057 ; \omega R$ factor $=0.141$; data-to-parameter ratio $=15.2$.

In the centrosymmetric title compound, $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$, the $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ bonds are trans to each other. In the crystal, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(\mathrm{S})$ hydrogen bonds link the molecules into zigzag chains running along the b axis. The O atom involved in the hydrogen bond has a longer $\mathrm{S}-\mathrm{O}$ bond than the other O atom bonded to $\mathrm{S}[1.441$ (2) versus 1.428 (2) \AA] .

Related literature

For our study of the effect of substituents on the structures of sulfonamides, see: Gowda et al. $(2005,2007)$; Rodrigues et al. (2011).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2} & c=10.144(2) \AA \\
M_{r}=452.53 & \alpha=90.04(1)^{\circ} \\
\text { Triclinic, } P \overline{1} & \beta=92.35(1)^{\circ} \\
a=6.0011(9) \AA & \gamma=98.01(1)^{\circ} \\
b=8.765(1) \AA & V=527.91(14) \AA^{3}
\end{array}
$$

$Z=1$

Mo $K \alpha$ radiation
$\mu=0.29 \mathrm{~mm}^{-1}$

Data collection
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.141$
$S=1.08$
2122 reflections
140 parameters
1 restraint
$T=293 \mathrm{~K}$
$0.48 \times 0.12 \times 0.09 \mathrm{~mm}$
independent and constrained refinement
$\Delta \rho_{\max }=0.78 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.28 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.84(2)$	$2.11(2)$	$2.938(4)$	$170(3)$

Symmetry code: (i) $-x+1,-y+1,-z$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5485).

References

Gowda, B. T., Foro, S. \& Fuess, H. (2007). Acta Cryst. E63, o2570.
Gowda, B. T., Shetty, M. \& Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Rodrigues, V. Z., Foro, S. \& Gowda, B. T. (2011). Acta Cryst. E67, o789.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, o788 [doi:10.1107/S1600536811007756]

$N, N{ }^{\prime}$-Bis[(4-methylphenyl)sulfonyl]adipamide

V. Z. Rodrigues, S. Foro and B. T. Gowda

Comment

The sulfonamide moiety is a constituent of many biologically significant compounds. As a part of studying the effect of substituents on the structures of this class of compounds (Gowda et al., 2005, 2007; Rodrigues et al., 2011), in the present work, the structure of N, N-bis(4-methylphenylsulfonyl)-adipamide (I) has been determined (Fig.1). The asymmetric unit comprises half of a molecule, the remaining portion being generated via an inversion centre, similar to that observed in N, N-bis(2-methylphenylsulfonyl)-adipamide (II) (Rodrigues et al., 2011). The conformation of the $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ bonds in the $\mathrm{C}-\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{C}(\mathrm{O})-\mathrm{C}-\mathrm{C}$ segment is anti to each other and the amide O atom is also anti to the H atoms attached to the adjacent C atom. The molecule is bent at the S atom with the $\mathrm{C}-\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{C}(\mathrm{O})$ torsion angle of $-58.5(3)^{\circ}$, compared to the value of -63.7 (4) ${ }^{\circ}$ in (II). Further, the $\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$ and $\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1-\mathrm{O} 2$ segments are nearly linear. The torsion angles $\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1$ and $\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1$ are, respectively, $-60.6(3)^{\circ}$ and $120.3(3)^{\circ}$. The corresponding values in (II) are $-71.3(4)^{\circ}$ and $106.9(4)^{\circ}$, respectively.

The dihedral angle between the planes of the benzene ring and the $\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{C}(\mathrm{O})-\mathrm{C}-\mathrm{C}$ segment in (I) is $72.0(1)^{\circ}$, compared to the value of 89.9 (1) ${ }^{\circ}$ in (II).
$\mathrm{N}-\mathrm{H} \cdots \mathrm{O} 2(\mathrm{~S}) \mathrm{H}$-bond formation results in an $\mathrm{S}=\mathrm{O} 2$ bond longer than the $\mathrm{S}=\mathrm{O} 1$ bond. A series of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(\mathrm{S})$ intermolecular hydrogen bonds (Table 1) link the molecules into infinite chains running in the b-axis direction (Fig. 2).

Experimental

N, N-Bis(4-methylphenylsulfonyl)-adipamide was prepared by refluxing a mixture of adipic acid (0.01 mol) with p-toluenesulfonamide $(0.02 \mathrm{~mol})$ and POCl_{3} for 1 hr on a water bath. The reaction mixture was allowed to cool and added ether to it. The solid product obtained was filtered, washed thoroughly with ether and hot ethanol. The compound was recrystallized to the constant melting point and was characterized by its infrared and NMR spectra.

Needle like colorless single crystals used in the X-ray diffraction studies were grown by a slow evaporation of a solution of the compound in ethanol at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to the distance $\mathrm{N}-\mathrm{H}=0.86$ (2) \AA. All other H atoms were positioned with idealized geometry using a riding model with aromatic $\mathrm{C}-\mathrm{H}$ distance $=0.93 \AA$, methylene $\mathrm{C}-\mathrm{H}=0.97 \AA$ and methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the $U_{\text {eq }}$ of the parent atom.

supplementary materials

Figures

Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Packing diagram of the title compound with hydrogen bonding shown as dashed lines.

N, N^{1}-Bis[(4-methylphenyl)sulfonyl]adipamide

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$
$M_{r}=452.53$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.0011$ (9) \AA
$b=8.765$ (1) \AA
$c=10.144(2) \AA$
$\alpha=90.04(1)^{\circ}$
$\beta=92.35(1)^{\circ}$
$\gamma=98.01(1)^{\circ}$
$V=527.91(14) \AA^{3}$
$Z=1$
$F(000)=238$
$D_{\mathrm{x}}=1.423 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1299 reflections
$\theta=3.1-28.0^{\circ}$
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle, colourless
$0.48 \times 0.12 \times 0.09 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Radiation source: fine-focus sealed tube
graphite
Rotation method data acquisition using ω scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\text {min }}=0.872, T_{\text {max }}=0.974$
3355 measured reflections

2122 independent reflections
1651 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-6 \rightarrow 7$
$k=-10 \rightarrow 7$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.141$
$S=1.08$
2122 reflections
140 parameters
1 restraint

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0507 P)^{2}+0.6262 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.78$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.28$ e \AA^{-3}

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.3932(5)$	$0.6198(3)$	$0.3150(3)$	$0.0359(6)$
C2	$0.6161(5)$	$0.6864(4)$	$0.3058(4)$	$0.0474(8)$
H2	0.6946	0.6720	0.2306	0.057^{*}
C3	$0.7186(6)$	$0.7738(4)$	$0.4098(4)$	$0.0550(9)$
H3	0.8665	0.8208	0.4031	0.066^{*}
C4	$0.6072(6)$	$0.7940(4)$	$0.5246(3)$	$0.0521(9)$
C5	$0.3872(6)$	$0.7224(4)$	$0.5321(3)$	$0.0550(9)$
H5	0.3107	0.7327	0.6088	0.066^{*}
C6	$0.2789(5)$	$0.6363(4)$	$0.4287(3)$	$0.0457(8)$
H6	0.1308	0.5898	0.4353	0.055^{*}
C7	$0.1735(4)$	$0.7710(3)$	$0.0561(3)$	$0.0366(7)$
C8	$0.2257(5)$	$0.8691(3)$	$-0.0642(3)$	$0.0392(7)$
H8A	0.0870	0.8975	-0.1030	$0.047 *$
H8B	0.2921	0.8100	-0.1292	0.047^{*}
C9	$0.3879(5)$	$1.0149(4)$	$-0.0284(4)$	$0.0483(8)$

H9A	0.4117	1.0770	-0.1070	0.058^{*}
H9B	0.3184	1.0743	0.0350	0.058^{*}
C10	$0.7223(9)$	$0.8915(5)$	$0.6365(4)$	$0.0829(14)$
H10A	0.7018	0.9971	0.6227	0.099^{*}
H10B	0.8802	0.8831	0.6400	0.099^{*}
H10C	0.6582	0.8565	0.7181	0.099^{*}
N1	$0.2657(5)$	$0.6347(3)$	$0.0575(3)$	$0.0411(6)$
H1N	$0.353(5)$	$0.614(4)$	$0.000(3)$	0.049^{*}
O1	$0.0322(4)$	$0.4586(3)$	$0.2128(2)$	$0.0569(7)$
O2	$0.3994(5)$	$0.4024(3)$	$0.1391(2)$	$0.0585(7)$
O3	$0.0681(4)$	$0.8081(3)$	$0.1472(2)$	$0.0532(6)$
S1	$0.25952(14)$	$0.51241(8)$	$0.18165(8)$	$0.0417(2)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0382(15)$	$0.0335(14)$	$0.0367(15)$	$0.0053(12)$	$0.0077(12)$	$0.0048(12)$
C2	$0.0387(17)$	$0.0537(19)$	$0.0501(19)$	$0.0044(14)$	$0.0134(14)$	$0.0067(15)$
C3	$0.0404(18)$	$0.054(2)$	$0.066(2)$	$-0.0062(15)$	$-0.0037(16)$	$0.0106(18)$
C4	$0.069(2)$	$0.0432(17)$	$0.0413(19)$	$0.0005(16)$	$-0.0104(16)$	$0.0102(14)$
C5	$0.066(2)$	$0.063(2)$	$0.0354(18)$	$0.0029(18)$	$0.0114(16)$	$0.0021(16)$
C6	$0.0414(17)$	$0.0514(18)$	$0.0431(18)$	$-0.0008(14)$	$0.0121(14)$	$0.0065(14)$
C7	$0.0255(14)$	$0.0381(15)$	$0.0443(17)$	$-0.0019(12)$	$-0.0001(12)$	$0.0011(13)$
C8	$0.0376(16)$	$0.0394(15)$	$0.0398(17)$	$0.0035(12)$	$-0.0015(13)$	$0.0027(13)$
C9	$0.0439(18)$	$0.0456(18)$	$0.054(2)$	$0.0022(14)$	$0.0027(15)$	$0.0095(15)$
C10	$0.113(4)$	$0.066(3)$	$0.059(3)$	$-0.015(3)$	$-0.024(2)$	$0.006(2)$
N1	$0.0521(16)$	$0.0372(13)$	$0.0349(14)$	$0.0079(12)$	$0.0069(11)$	$0.0008(11)$
O1	$0.0529(14)$	$0.0520(14)$	$0.0595(15)$	$-0.0161(11)$	$0.0062(11)$	$0.0040(11)$
O2	$0.0910(19)$	$0.0375(12)$	$0.0521(15)$	$0.0215(12)$	$0.0213(13)$	$0.0053(10)$
O3	$0.0475(13)$	$0.0578(14)$	$0.0580(15)$	$0.0152(11)$	$0.0218(11)$	$0.0072(12)$
S1	$0.0516(5)$	$0.0318(4)$	$0.0411(4)$	$0.0018(3)$	$0.0091(3)$	$0.0013(3)$

Geometric parameters (${ }_{A},^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 6$	$1.383(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.511(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.389(4)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.529(4)$
$\mathrm{C} 1-\mathrm{S} 1$	$1.749(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{C} 2-\mathrm{C} 3$	$1.376(5)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	$\mathrm{C} 9-\mathrm{C} 9$	$1.498(6)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.390(5)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9700
$\mathrm{C} 3-\mathrm{H} 3$	0.9300	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9700
$\mathrm{C} 4-\mathrm{C} 5$	$1.386(5)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9600
$\mathrm{C} 4-\mathrm{C} 10$	$1.505(5)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9600
$\mathrm{C} 5-\mathrm{C} 6$	$1.378(5)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	0.9600
$\mathrm{C} 5-\mathrm{H} 5$	0.9300	$\mathrm{~N} 1-\mathrm{S} 1$	$1.653(3)$
$\mathrm{C} 6-\mathrm{H} 6$	0.9300	$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N}$	$0.837(18)$
$\mathrm{C} 7-\mathrm{O} 3$	$1.210(4)$	$\mathrm{O} 1-\mathrm{S} 1$	$1.428(2)$
$\mathrm{C} 7-\mathrm{N} 1$	$1.385(4)$	$\mathrm{O} 2-\mathrm{S} 1$	$1.441(2)$

sup-4

supplementary materials

C6- $\mathrm{C} 1-\mathrm{C} 2$	120.6 (3)
C6- $\mathrm{C} 1-\mathrm{S} 1$	120.3 (2)
C2- $21-\mathrm{S} 1$	119.1 (2)
C3-C2-C1	118.8 (3)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.6
C2-C3-C4	121.8 (3)
C2-C3-H3	119.1
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.1
C5-C4-C3	117.9 (3)
C5-C4-C10	121.3 (4)
C3-C4-C10	120.8 (4)
C6-C5-C4	121.6 (3)
C6-C5-H5	119.2
C4-C5-H5	119.2
C5-C6-C1	119.2 (3)
C5-C6-H6	120.4
C1-C6-H6	120.4
O3-C7-N1	121.5 (3)
O3-C7-C8	124.2 (3)
N1-C7-C8	114.2 (3)
C7-C8-C9	111.2 (3)
C7-C8-H8A	109.4
C9-C8-H8A	109.4
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-2.4 (5)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	178.4 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	1.7 (5)
C2-C3-C4-C5	0.2 (5)
C2-C3-C4-C10	-179.4 (3)
C3-C4-C5-C6	-1.3 (5)
C10-C4-C5-C6	178.3 (3)
C4-C5-C6-C1	0.5 (5)
C2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	1.4 (5)
S1-C1-C6-C5	-179.5 (3)
O3-C7-C8-C9	67.3 (4)
N1-C7-C8-C9	-109.9 (3)

C7-C8-H8B	109.4
C9-C8-H8B	109.4
H8A-C8-H8B	108.0
C9 ${ }^{\text {i }}$ - $\mathrm{C} 9-\mathrm{C} 8$	114.2 (3)
C9 - ${ }^{\text {i }} 9$ - 99 A	108.7
C8-C9-H9A	108.7
C9 - ${ }^{\text {i }} 9$ - 99 B	108.7
C8-C9-H9B	108.7
H9A-C9-H9B	107.6
$\mathrm{C} 4-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	109.5
C4-C10-H10B	109.5
H10A-C10-H10B	109.5
$\mathrm{C} 4-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{H} 10 \mathrm{~B}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
C7-N1-S1	125.4 (2)
C7-N1-H1N	122 (2)
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	112 (2)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	118.77 (16)
O1-S1-N1	110.32 (15)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$	103.00 (14)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	109.01 (15)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	109.75 (15)
N1-S1-C1	105.04 (13)
C7-C8-C9-C9 ${ }^{\text {i }}$	61.1 (5)
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1$	-3.7(4)
C8-C7-N1-S1	173.6 (2)
C7-N1-S1-O1	58.8 (3)
C7-N1-S1-O2	-173.4 (3)
C7-N1-S1-C1	-58.5 (3)
C6- $\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 1$	2.0 (3)
C2- $\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 1$	-178.8 (2)
C6- $\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 2$	-129.6 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 2$	49.5 (3)
C6- $\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1$	120.3 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1$	-60.6 (3)

Symmetry codes: (i) $-x+1,-y+2,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 2{ }^{\mathrm{ii}}$	$0.84(2)$	$2.11(2)$	$2.938(4)$	$170(3)$

supplementary materials

Fig. 1

Fig. 2

